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When surface waves encounter a step in bottom topography and/or a change in 
velocity parallel to the step, refraction and partial reflection occur. Comparison of 
several approximate solutions indicates that no single approximation works well for 
all cases. The pattern of success among models suggests that the velocity profile a t  
the boundary favours the free wave with smaller vertical scale. For current changes 
over a flat bottom, a two-term Galerkin expansion (cf. Evans 1975) is employed for 
comparison with the other more general models. For small currents (lAV < +), an 
' action-based approximation' (cf. Smith 1983) is favoured, although all models 
perform adequately. With a strong current, one one-term (one-sided) model performs 
best, another worst among models; the favoured model includes ephemeral modes 
on the side with larger-scale free waves. For changes in depth only, the one-sided 
model with ephemeral modes on the deep side was shown by Miles (1967) to perform 
well. The two-term expansion (cf. Evans 1975) is not easily extended to this case, 
and none of the other approximations perform adequately. In the unusual case of 
a step combined with a strong current, such that much shorter waves occur in the 
deeper region, it is inferred that none of the models axe accurah. Reflection from a 
submerged wall provides a severe test of the models. Without the ephemeral modes, 
no net reflection occurs. The Miles-like model overpredicts reflection slightly. 

1. Introduction 
The problem considered is that of (linear) refraction and partial reflection of surface 

gravity waves propagating at some angle over a discontinuity in depth, velocity, or 
both; flow perpendicular to the shelf is not considered. Such a discontinuity could 
serve, in practice, as an approximation to a change in depth and/or current over a 
small but finite horizontal distance. Even so, no exact solution of this simpler problem 
exists; rather, arbitrary accuracy can be obtained by increasing the number of terms 
in a numerical analysis. A practical application would probably involve integration 
over a spectrum of incident waves; thus, it  is desirable to develop guidelines for 
accuracy versus the number of terms included. No such complete numerical solution 
is attempted here; rather, guidelines are developed by comparison of results from 
simpler approaches. 

Several previous approximations are extended and compared within a unified 
framework. The pivotal distinction between the models is what vertical profile of 
velocity (or pressure) is assumed to exist at the boundary between the regions. In 
the simplest, plane-wave approximation, the free-wave profile from just one side is 
assumed to dominate, and the other free-wave profile is adjusted to a best fit. In a 
plane-wave variational approximation (after Miles 1967), the free-wave profile from 
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one side again dominates, while in the other region ephemeral modes (solutions that 
are oscillatory in depth and decay horizontally) are included in the best fit. In his 
analysis, Miles (1967) found this approximation to be quite accurate for a change in 
depth alone, with the ephemeral modes included on the deeper side. Here, this 
approach is extended to include current changes as well. In an Evans-like approxi- 
mation (after Evans 1975), a two-term Galerkin expansion is employed; i.e. the 
profile at the boundary is assumed to be a linear combination of just the two free-wave 
profiles. The ephemeral modes on both sides are then included in the fit. Here, this 
approach is extended to finite depth, but is limited to a flat bottom ; i.e. only a current 
change is treated. In  a similar extension, but allowing additional terms in the profile 
description, McKee & Tesoriero (1986) show that this two-term expansion is adequate 
for the present comparison, with (for example) errors in the magnitude of the 
reflection of less than about 0.03 times the incident amplitude (for an incident angle 
of 45’ with strong opposing flow), decreasing to negligible levels for A V less than half 
the phase speed of the waves. Extension of Evans’ approach to include changes in 
depth proves cumbersome; it serves here as a reference for comparison with the other 
more general models. 

A common theme which can be traced through the previous works is the 
conservation of wave action. Evans (1975) was able to show that the complete 
solution conserves net action flux across the change, where action is defined as the 
wave energy divided by frequency. For a change in depth only, conservation of action 
and energy are identical in form, and were shown by Miles (1967) to hold. Solutions 
for diffraction by a trench (Miles 1982; Kirby & Dalrymple 1983; Kirby, Dalrymple 
& Seo 1987) also conserve wave action. Indeed, action is conserved for a wide class 
of problems, including that posed here (see Hayes 1970), and therefore provides a 
consistency check on solutions obtained. In one recent study of diffraction by a 
current jet, action is not conserved (Mei & Lo 1984) ; however, the difficulty is traced 
to application of inappropriate boundary conditions (Kirby 1986). While Mei & Lo 
(1986) give revised results, the new conditions are not given, and it is therefore not 
possible to verify that they are correct. 

An alternative approach is to use action conservation explicitly in formulating the 
model, as in my earlier ‘action-based model’ (Smith 1983), which was found to 
perform well for weak current changes (AV < +c). This is extended here to include 
changes in depth. Comparison with the plane-wave solutions leads to interpretation 
of the action-based model as a root-mean-square matching over the open portion of 
the boundary. Comparison with Evans’ approximation indicates that, for velocity 
changes smaller than half the phase speed, the action model is slightly more accurate 
than either possible plane-wave solution. In the limit of strong opposing currents, 
however, the reflection approaches that given by the plane-wave solution in which 
the high-wavenumber (transmission) side is treated as the shallow region. Physically, 
the strong surface trapping is analogous to a shallower water depth. In  the case of 
a step only (Miles’ problem), there is a negligible difference between the action and 
plane-wave models. Over a broad range of shelf depths, neither of these simpler 
models is adequate; in these cases the ephemeral modes in the deep region are 
important. 

From the pattern of success and failure among the models, a consistent inter- 
pretation emerges: to the degree that the vertical scale of the free waves differs, 
the smaller-scale wave is favoured in the profile at  the boundary. Thus, the region 
containing the larger-scale waves requires a greater contribution from ephemeral 
modes to meet the boundary conditions. As a guideline, enough modes should be 
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FIGURE 1. Schematic view of the problem. At z = 0, the depth and/or the velocity parallel to the 
z-axis may change. Region 1 is to the left (z < 0) ,  region 2 to the right. The geometry may always 
be rotated so that h, 6 h,. 

included to resolve the change in scale from large to small. For moderately large 
changes in depth, for example, the number of modes needed may be large on the deep 
side (up to about 30 modes), and small on the shallow side (of order 1). 

Finally, diffraction by a thin submerged wall is considered. Since the plane-wave 
and action-based models tacitly assume that only the net change in index of refraction 
is important, they predict no net reflection off the wall. In  this case, the difficulty 
in matching via the ephemeral modes is a dominant effect, and so a treatment at least 
as sophisticated as Miles’ (1967) approximation is required. In  the true solution, the 
velocity is singular at the top of the wall (Dean 1945), whereas the present application 
of Miles’ approximation imposes the profde of free waves in the non-existent middle 
region. The resulting errors in reflection typically amount to about 0.035 times the 
incident amplitude. 

2. Formulation 
The formulation here follows closely those of Miles (1967), Evans (1975) and Smith 

(1983). Interested readers are referred to these for more details. 
The problem is posed in terms of velocity potentials in each of two inviscid, 

irrotational regions, and consists of matching interior solutions for wavelike motion 
in each region at a boundary characterized by an abrupt change in depth and/or 
tangential velocity (i.e. velocity parallel to the step). The axes are chosen as in Miles: 
the change occurs at x = 0, y increases downwards, and z is parallel to the step/vortex 
sheet (see figure 1). Each region haa a flat bottom, at depths h, for x < 0, and h, for 
x > 0. Without loss of generality, it is assumed that h, < h,. Thus, let 

be the total velocity potential in each region. Assuming wave motion of the form 
expi(pz-wt), the intrinsic frequency in each region is defined by 

cn = w-pv , ,  (2 .2)  
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(where w is the apparent frequency and p is the along-step component of the 
wavenumber). In the following discussion, V, > 0 (i.e. current flowing in the same 
sense as the z-propagation of the waves) is referred to as a following current and 
V, < 0 as an opposing current. 

The interior solutions are (cf. Miles 1967): 

00 

( A ,  e-iqn IZl + B  n e'qnlzl ) X n ( Y ) +  E Cnje-'n~lr' 
,-1 

where 

and 

x,(y) = 2k:[2kn h,  + sinh 2k, hn]-i cosh k,(h, - y), 

$Jy) = 2&,,[2Sni h, +sin 2S,, h,]-: cos S,,(h, - y), 

qn = (kn 2 -  P 2 1  10, 

r,, = (s2,,+p2)?, (2.7) 

gk, tanh k, h,  = a; 

gS,, tan S,, h, = - a:. 

(2.4) 

(2.5) 

(2.6) 

(2.8) 

(2.9) 

In this last, the Snj are the ordered positive solutions, so that the index j corresponds 
to the number of zero-crossings of the ephemeral mode, $,,(y). The vertical modes 
x,, $,, are orthonormal over the corresponding depth intervals (0, hn).  

As shown elsewhere (e.g. Smith 1983), the matching conditions at x = 0 can be 
written to lowest order as 

a1$1 = a 2  $29  (2.10) 

a, l a $ , =  - q> " O <  y < h,, 

-- a$, - 0, h, < y < h,. 

ax ax 

ax 

(2.11) 

(2.12) 

The first of these (2.10) ensures continuous pressure ; the second (2.1 1) requires that 
material on the vortex sheet between the regions remains on the sheet, i.e. continuous 
horizontal displacements across the boundary; the last (2.12) ensures no flow into 
or out of the vertical face of the step. 

To complete the formulation as in the previous works, the horizontal displacements 
a t  x = 0 are defined: 

(2.13) 
0, h, < h < h,. 

The displacement condition (2.11) is convolved over 0 < y < h, with xn and the $,,, 
yielding (using the orthonormality) 

and 

(2.14) 

(2.15) 

Note that this is only possible because U(y) = 0 over h, < y < h,, so that the rn = 2 
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convolutions can be extended to h,. Substituting (2.15) into (2.10), the pressure 
condition becomes 

2 h,  x (A,+B,)a,Xn(Y) = J u ( t ) ~ ( y , t ) d t ,  0 < y < h1, (2.16) 
fl-1 0 

where (2.17) 

The problem is thus posed as an integral equation with a symmetric kernel. 

outgoing to incident amplitudes : 
The various solutions will be expressed in terms of a transmission matrix 7, relating 

B = TA, (2.18) 

where B = (Bl, B,)T, A = (Al,  AJT. (2.19a, b) 

For example, the trivial case h, = h, and V, = V, results in the anti-identity matrix 
because of the way the $, are defined: 

0 - 1  
T = L 1  01. 

(2.20) 

Although an exact expression for T may be derived from the foregoing (see e.g. Evans 
1975), it is simpler here to substitute the trial functions for U(y) from each 
approximation directly into (2.14) and (2.16), and find the elements of 7 by 
elimination. The intermediate results of the more elegant expression are singular for 
the plane-wave solution (Miles 1967). 

As mentioned in $1, action flux perpendicular to the discontinuity is conserved. 
Smith (1983) showed that the action equation in this case reduces to the form 

-c71~l~112- l~112~ = Qz(lAz12-lB,12). (2.21) 

(Unfortunately, this equation (3.12) in the 1983 paper, was omitted in the published 
version.) 

Finally, to relate the potential amplitudes A,, B, to surface displacements a,, b,, 
surface amplitudes are defined as in Miles (1967) : 

a k  
(a,,b,) = -iq-'~,Xfl(0) (A,,B,) = -i{-} ( A , , ~ , ) ,  (2.22) 

SCB, 

where cB, is the group velocity in region n. For example, with a, = 1 and a, = 0, the 
surface-amplitude reflection R and transmission T become 

R1= 71 (2.23) 

and 

while with a, = 0, u2 = 1, 
R, = T,, 

and 

(2.24) 

(2.25) 

(2.26) 

In general, three classes of solutions can arise : (i) the normal case of simple refraction 
and partial reflection; (ii) for sufficiently large following currents, kf < p 2 ,  so qt is 
imaginary and total reflection occurs (where t is the index of the transmitted waves); 
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and (iii) for extremely large following currents once again kt > p 2 ,  but with crt < 0, 
and transmission occurs into waves propagating upstream (there can be over- 
reflection in this case). 

3. Some approximations 
3.1. Truncation 

To solve (2.14) and (2.16) explicitly, U(y) is expressed in terms of the truncated 
orthonormal set (over 0 < y < h,) taken from the shallower region (cf. Kirby et al. 
1987) : 

(3.1) 

Both sides of (2.16) are convolved with each member of this set, leading to ( M +  1) 
new equations in its place, with (M+1) new unknowns as well. Note that some 
number M' of the other set of ephemeral modes ykf12 must also be chosen to evaluate 
Gin (2.17). These need not be equal; in fact, Miles' variational approximation (below) 
corresponds to M = 0, M i  00. The two equations for displacement at the boundary 
(2.14) reduce the four free-wave amplitudes to a two-parameter family of solutions, 
depending on the two incident amplitudes as implied in (2.18). Presumably, as M and 
M are increased, the solution can be obtained to arbitrary accuracy; this is one 
approach taken (with M = M' = 10) by Kirby et al. (1987). Note that as k ,  h, 
becomes large, it is not necessarily the lowest-mode yk,$ which are important; rather, 
those modes for which the S,, are comparable to the k, may dominate in the 
matching. 

3.2, Plane-wave solution (Pi) 
A plane-wave solution (Pi) analogous to Lamb's (1945) shallow-water step solution 
is obtained as by Miles (1967): (3.1) is truncated to 

U(Y) = uox1. 
Equation (2.14) then becomes 

iu 

91 
(A, -B, )  = 2 UO 3 

i a  

92 
(A2-B,)  = "(AN)u0, 

and (2.16), with G set to zero, becomes 

ul(Al + B,) +a2 AN(A2 + B,) = 0, 

4 Q2 

0 4 Q1 
where 

The result, with L = u2A/a,, is 

AN = j"' X1X2dy, A2 = -. 

(3.3a, b)  

(3.4) 

(3.5a, b )  

(3.6) 

Figure 2 shows the magnitude of reflection according to Pi (and also by the 
action-model A, to be discussed later) for waves incident at various angles from deep 
water onto a shelf, as considered by Miles (1967). In the lower plots, the shelf depth 
h, is normalized by the incident wavenumber, k, = 1.0; thus, the x-coordinate is 
directly proportional to the depth. In the upper plots, shelf depth is shown relative 
to transmitted wavenumber k,, as in Miles (1967); this is provided for comparison 
with Miles (1967) and also because i t  shows an expanded view of the region near 
h, = 0. 
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FIQIJRE 2. Magnitude of reflection from a shelf for waves incident at various angles from deep water. 
Shelf depth is shown normalized by (a) transmitted wavenumber (k ,h,) ,  aa in Miles (1967); and 
(b) k,h, relative to the incident (fixed) wavenumber. Note that (a) expands the region of small h,. 
Both the plane wave (Pl) and the action (A) models are plotted. To the right of the zero-crossing, 
the A curve is just barely above the P1 curve; otherwise, they are indistinguishable. 

The sign of (the real part of) R reverses at finite depth, from positive in the shallow 
h, limit to negative at intermediate depth. A key to understanding this is the group 
velocity perpendicular to the shelf. Consider first waves normally incident from the 
deep region (2) into shallow water, where cg = cp = (gh,)t. As hl-+O,cg decreases, so 
larger amplitudes are required in the shallower region to maintain a constant action 
flux across the step. Thus, positive reflection aids in matching. Conversely, as h, is 
increased c p  increases monotonically, but cg goes from c* to +9' with a maximum at 
an intermediate depth. For h, near this intermediate value, c g  is larger than in deep 
water, so less amplitude is required in region 1 to match the action flux from region 
2. In this case negative reflection helps by reducing the amplitude at  the boundary. 
In  the case of obliquely incident waves, the decrease in c p  in the shallower region turns 
the waves towards normal, further increasing the component of cg perpendicular to 
the step; thus this intermediate-depth effect is increased as the angle of incidence 
increases. 
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FIQURE 3. Magnitudes of transmission and reflection at 0’ incidence by M1, using various numbers 
of terms M in the trapped-mode contribution. Near k, h, = 0.2, even 32 terms are barely adequate 
to resolve the reflection. Transmission is shown for M = 0 and 64 only; corresponds to 
transmission from deep to shallow, T, to transmission from shallow to deep. 

3.3. Miles’ variational approximation (M1 ) 
The variational approximation of Miles (1967) is recovered by relaxing the condition 
G = 0. Putting U(y) x u,x, into (2.16) and convolving with x1 over 0 < y < h, yields 

~ l ( A l + B l ) + ~ , A N ( A , + B , )  = uOX (3.7) 

where 

Together with (3.3) this leads to 

-2NL-’ (1 -P- iX)  -2NL 1 ‘ (P- 1 -iX) 
T = (1  +P-iix)-l (3.9) 

The results, denoted M1, for waves incident from deep water (actually k, h, = 4) onto 
shelves of various depths are shown in figure 3, using various numbers M of modes 
in evaluating X via (3.8). Note that M = 0 corresponds to P1. Here, the reflection 
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and transmission are plotted against k ,  h, to facilitate comparison with M67 and for 
the expanded view of the shallow-shelf limit. The effect of X is always to increase 
the magnitude of R relative to the P1 contribution. Also, X smooths over the sign 
reversal of R seen in P1. Note that the ephemeral modes contribute significantly 
(via X) to R over depths k,  h, near 0.5. Finally, as k ,  h, decreases more modes are 
required to fill in the reflection, until even 32 modes are barely adequate near 
k, h, = 0.2. To understand this, view it in terms of h,/h, rather than k, h, : on the deep 
side, k,  h, = 4 and k, x a2/g = constant, while on the shallow side, k ,  h, = and 
k,  x 5(a2/g)  = 5k,;  thus, k,  h, = (k), and so h,/h, = A. To resolve h, with modes of 
comparable vertical scale, 100 modes would be required in region 2 ; in the light of 
this, i t  is not surprising that so many modes are required. 

3.4. Flat bottom: Evans' approach (E) 
In the case h, = h,, convolution of the pressure condition with the n = 2 set of 
functions presents no problem. In this case, the selection U(y) - xl(y) seems rather 
one-sided, and Evans (1975) instead chooses (effectively) 

2 

U(Y) x d n X n .  
n-1 

Convolutions with x1 and x2 lead to 

(3.10) 

(3.1 1 a)  

la, (A ,  + B,)  + c,(A, + B,) = (5) X ,  d,, (3.11 b)  

where I = AN, X, is the same as X of (3.8), and X, is given by (3.8) with all 1s and 
2s reversed and with A-2 replaced by A,. The displacement condition yields 

P Z  

( 3 . 1 2 ~ )  

(3.12b) 
i a  

P2 
and A,-B, = ?(Id,+d,) .  

After some algebra, the result may be written 

- 2(AL) Im {v ,  u,*} 
T = (u, U ,  -v, w,)-, 

-2(AL)-l Im{v,u,*} ( u l u , * - v l v ~ )  
where 

un = {l-P-iXn}, (3.14) 

vl = 1{1 -P+iA-2X2}, v2 = 1{1 - I2+ihPX1} ,  (3.15a, b )  

3.5. Flat bottom, continued (P2, M2) 
Unfortunately, the above approach does not easily generalize to h, < h,, since the 
convolutions of (2.16) are necessarily restricted to the shallower depth, and the 
functions x , , $ , ~  are not orthogonal over this range. To assess the prejudice 
introduced in P1 by (3.2), replace (3.2) with 

V(Y) x UOX,(Y).  (3.16) 

The result is easily worked out by reversing the roles of n = 1 and 2, leading to 

(3.17) 
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where. with = A - l .  

(3.18) 

h 
and x f l =  XlX2dy = AN. (3.19) 

By inspection of (3.17), this solution (P2) would match Pi only if m = N-'; yet from 
(3.19) this would require AN = Am= 1 .  A compromise solution, giving just this result, 
is obtained by replacing ( 3 . 5 ~ )  with 

0 

(3.20) 

where A is defined as in (3.5b). With h, = h,, the resulting model corresponds exactly 
to the 'action-based model' of Smith (1983). The use of h, in both integrals here is 
deliberate, anticipating the next section. Physically ( 3 . 5 ~ )  overemphasizes the 
mismatch of x1 and x, ,  leading to an exaggerated change in the index of refraction 
N .  The substitution (3.20) corresponds to an assumption that the ephemeral modes 
redistribute the variance of x1 and x ,  vertically, without affecting the impedance at  
the boundary itself. This strategy is extended to the more general case of a change 
in depth as well in 83.6. 

In  a similar fashion, n = 1 and 2 can be reversed in Miles' variational improvement, 
leading to an analogous result, here denoted M2. Comparison and discussion of these 
various results are given in $4. 

3.6. An action-based model (A) 
In Smith (1983), an unspecified average ( 2 , )  was posited and, in the case h, = h,, 
assumed to apply equally to the pressure and displacement conditions. This led to 
equations of the form (in the present notation) 

-Y(Al+Bl )  = (A,+Bz) ,  (3.21) 

and "Y(A,-B,) = (4-BzL (3.22) 

where 

and 

This has the general solution 

I. - 2y-1 
T =  (l+a)-l[ a-1 

-2ay l - a  

(3.23) 

(3.24) 

(3.25) 

From this, conservation of action (2.21) implies the relation 

"Y2 = Q1/92* (3.26) 

which, in turn, implies that < x l )  = < x z ) .  The results of following the treatment 
through with non-normalized functions suggests that this average corresponds to a 
root-mean square over depth, 

(3.27) 
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As noted by Smith (1983), a change in depth at x = 0 implies that the same average 
must not, in fact, apply to both (2.10) and (2.11). Rather, in the shallow-water limit, 
the conditions must approach those given by e.g. Pi : continuous surface elevation, 
and continuous mass-flux perpendicular to the change. 

To extend the results to h, -C h,, the pressure average is retained as written in 
(3.27), leading to 

(3.28) 

Equations (3.21) and (3.22) are also retained in form, and hence so are the resulting 
(3.25) and (3.26). However, (3.23) becomes 

(3.29) 

and a now incorporates the difference between a pressure and displacement average, 
determined from conservation of action : 

(3.30) 

Since H +  1 as h2+hl, this reduces to the previous action-based model in the case 
of a change in velocity only. 

The relation between the plane-wave solution P1 and this model (A) is clarified by 
referring again to (3.15): 

A N  E [I; x: dy s:' dy]t = Hi. (3.31) 

Identifying N 2  with a and N(An2/crl) = N L  with y-l, the two solutions, (3.6) and 
(3.25), are identical. 

Finally, in the shallow-water limit x,+h;! and so 

A N =  ~ ~ x ~ d y + ( h ; f h ~ i ) h ,  = Hi A N .  (3.32) 

Thus, the models A and P1 converge in the shallow-water limit. In  the numerical 
results given by Kirby et al. (1987) for a trench, this is found to be the limit in which 
P1 performs best. 

I:' 

4. Comparison of models 
For comparison, the various results (Pl, M1, E and A) are represented homo- 

logously and in terms of amplitudes. Referring to (2.23)-(2.26), the amplitude 
diffraction matrix T can be written for M1: 

where 

and A is defined by (3.5b). The results of P1 are recovered by setting X = 0 in this, 
and A is evaluated with X = 0 and also replacing N by N ,  as defined above. 

For a step only, the results of models A and P1 were shown in figure 2. As 
demonstrated by this figure, there is negligible difference in reflection at any shelf 
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R'I~URE 4. Magnitude of reflections from currents alone. The curent change is normalized by the 
incident phase speed. Evans' (1975) solution (E) is the most accurate. See text for descriptions of 
the other solutions (action-based A, plane-wave P1 and P2, Miles-like M1 and M2). (a) 60" incidence; 
(a) 30". 

depth between these two models. Again, comparison with the variational model 
(figure 3) indicates that, over a wide range of intermediate depths (measured by 
k, hl) ,  the trapped modes are important. 

Next, consider the case of shear alone (Evans' problem). Figure 4 shows the 
magnitude of reflection in deep water from all 6 models (A, E, P l ,  P2, M1 and M2), 
for waves incident at 30' and 60' from normal into a region moving at -3 to +2 
times the incident phase speed. The results designated P1 and M1 are for waves 
incident from region 2 (at rest) into region 1 (moving), anticipating the case where 
waves impinge on a shallower, flowing region from deep water. Conversely, P2 and 
M2 treat waves incident from region 1 (at rest) into a moving region 2 as would be 
required for waves impinging on a deeper region in relative motion. The velocity 
change AV/c is normalized by the incident-wave phase speed. Evans' solution (E) 
is the most accurate (see McKee & Tesoriero 1986) and is used here as the reference. 
The next best models are A, M1, and P1. For JAV/c( c 1 or so, the action model A 
compares best with E. For large opposing currents, AV/c-+-3 ,  M1 and P1 become 
more accurate. For the stronger opposing flows (A V/c c -0.5 or so), P2 significantly 
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FIGURE 5. Real part of reflections from currents for (a) 8, = 60°, ( b )  30'. Note that A is about 
midway between P1 and P2. The 'reference'reflection E is closest to Afor AV/c > -0.5, approaches 
P1 as AV/c+-oo. For A V  > 0 in (b)  (30°), A and E coincide between the values from P1 and 
P2. In the shallow-wave limit, all models coincide (kh < 0.1). 

overpredicts the reflection. Since the trapped modes' contribution in M2 always 
increases IRJ, M2 is even worse than P2 in this case. 

The step comparison shows the trapped modes' contribution to be important over 
a wide range of shelf depths, so the poor showing of M2 with current changes implies 
that none of the approximations given here are suitable for the case of deepening with 
strong opposing flow. Further, from (4.1), IR,I = IRzl, so 'deepening with strong 
opposing flow' is analogous to some dual case of shoaling with following flow. The 
dual case is found simply by reversing the x-component of the transmitted wave, and 
renormalizing the change in current by the new incident phase speed. For strong 
opposing flows, the transmitted wave is refracted toward near-normal exodus, with 
a much shorter wavelength. The dual in this case corresponds to near-normal 
incidence with following flow near the turning value (the smallest value yielding total 
reflection). The best example in figure 4 is for 30" incidence (b) near A V / c  = + 0.5 (to 
the right). Although there is moderate disagreement there, it is no worse than near 
AV/c = -0.5 on the 60" plot (a). A general rule is that the approximate solutions 
are acceptable for lAV/cl < 0.5. 
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FIQURE 6. (a) Comparison of IRI from A (solid lines) and P1 (dashed), and ( b )  comparison of M1 
(solid lines) and Pi (dashed), for various currents AV/e (across) and shelf depths k, h, (into page) 
for waves incident at 30' from deep water (k ,h,  = 4). For AV/c > - 1 or so, A and P1 are similar. 
For AVlc > 0, note that M1 > Pi > A. For k,h, < 1 and A V  > 0,Ml A and P1, indicating that 
trapped-mode contributions to IRI are significant. 

The relation of A to P1 and P2 as a compromise solution is made graphically clear 
in figure 5 ,  which shows the real part of the reflection (with sign) from the shear done. 
The change in index of refraction in model A is roughly the geometric mean of the 
other two, N x ( N ,  N,)i ,  so the reflection by A is midway between P1 and P2. For 
small currents, and no depth change, the vertical scales on either side are comparable, 
and this mean solution is appropriate. The pattern of success suggests that as the 
current increases, a weighted mean would perform better, favouring the smaller-scale 
profile at the boundary as (in the extreme case) P1 does here. Also shown in figure 
5 are the shallow-water limits (for kh < 0.1 or so). In  this limit, all the solutions 
collapse to a single curve. The transition from deep- to shallow-water limits holds 
no surprises. The deep and shallow curves intersect at (0,O). 

The one-sided approach of P1 and M1 is acceptable whenever the shallower side 
has the smaller vertical scale, as is certainly the case in the absence of currents. The 
cases of strong opposing flows and their duals are exceptional in this sense : the region 
treated as the deeper side has the shorter free-waves, and so can have the smaller 
vertical scale. Physically, it appears that the ephemeral modes can account more 
easily for a reduction in vertical scale, so that the actual profile a t  the boundary 
favours the smaller-scale profile. 

Finally, consider waves incident from deep water onto a shelf, upon which a current 
flows parallel to the step. Figure 6 shows comparisons, for 30' incidence, between A 
and P1 (a) ,  and between M1 and P1 ( b ) .  The depth is normalized by the deep-water 
(incident) wavenumbers k, h,. For lA'V/cl < 1 or so, A and P1 are in rough agreement, 
which improves with shallower shelfs. In this same velocity range, the M1 vs. P1 
comparison demonstrates significant contributions from the ephemeral-mode term 
for k ,  h, < 1. Much of this region lies to the right of IA V/cl < 0.5 and should be viewed 
with suspicion. Even in the range 0 < AV/c < 0.5 the difference can be significant. 
Figure 7 shows the same comparisons for 60' incidence. In this case, agreement 
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FIGURE 7. As in figure 6, but for = 60'. Here, A and P1 (a) are virtually coincident for 
AV/c > -0.5. Significant trapped-mode contributions, M1 418. P1, shown in (a), are confined to 
k,h, < 0.5 or so. In the lower right-hand corners (small k,h,, AV/c > 1.5) IRI drops from 1.0 as it  
becomes possible to match waves propagating upstream. 

between A and P1 is restricted to AV/c > -0.5, and significant differences between 
M1 and P1 (i.e. significant trapped contributions) occur only for k, h, < 0.5. Also 
visible in figure 7, for very shallow shelves and extremely strong following currents 
(lower-right corners) are the class (iii) results with transmissions propagating 
upstream. 

The comparison with M1 indicates that neither of the simpler approximations 
(A, P1) is adequate to treat significant changes in depth (i.e. transmission onto shelves 
where k,  h, < 4). Even the results of M1 are cast into some doubt for strong following 
flow, so comparison with a full numerical analysis is desirable (cf. Kirby et al. 1987). 
The pattern of failures strongly suggests that the profile at the discontinuity favours 
the free waves with smaller vertical scale. 

5. Reflection from a partial barrier 
Further insight is gained by considering the diffraction by a thin ridge or wall, 

extending partway up from the bottom. The net diffraction can be obtained from 
the above for an infinitesimally wide middle region, shallower than the semi-inihite 
regions to either side. Referring to the following diagram: 

the diffraction matrix .r between the middle and right-hand region (at x = 0) is just 
as above. The other matrix 7' is found by shifting to z' = 0 at x = - D  and rotating 
180" about the vertical (y-axis). For a wave incident from the left, A, = A; = 1 and 
A, = 0. For D+O, B; = A, and A; = B, (there is no phase shift). This separation is 
made simple here because none of the models considered includes ephemeral modes 
in the shallow (middle) region; rather, a free-wave profile is prescribed. Since the 
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FIGURE 8. Reflection from a submerged wall for various incident angles, for effectively deep water 
away from the wall (k ,h,  = 4). Note the rapid drop in IRI as k,h, increases from zero. Only M i  
(M2) predicts any reflection here. 

inviscid solution is actually singular at the top edge of the wall (Dean 1945), this is 
a very severe test of the importance of this prescription. The net reflection and 
transmission are 

R = (1  -711 7;1)-' 7 2 1  711 +7i2, (5.2) 

and T = (1 -T,, T;,)-' T~~ T;,. (5.3) 

In the simplest case, h, = h, and V, = V,, the problem is symmetric and T = 4 ;  in 
this case the above reduces to 

and (5.5) 

The resulting reflection vs. wall depth is shown in figure 8 for various incident angles. 
It is clear from (5.4) that neither P1 nor A predicts any reflection, regardless of 

the barrier depth. Physically, both solutions employ a tacit assumption that the 
ephemeral modes are unimportant ; i.e. that the reflection is determined entirely by 
the change in index of refraction P. Regardless of the accuracy with which N2 is 
eatimated, this implies that any reflection R,  from the near face is exactly cancelled 
by the negative reflection at the far face: Rf = - R,. In this case, the problem reduces 
entirely to the effects of the ephemeral modes, exactly the opposite of the tacit 
assumption. 

Dean (1945) shows numerically calculated values of IRI for 0' incident angle and 
two values of k, h,. At k, h, = a, he shows IRI = 0.435, compared with 0.470 from the 
present variational approximation. At k, h, = t ,  the respective values are 0.267 and 
0.302. In both cases, the present result is high by 0.035 times the incident amplitude. 
While this is worse than an approximation offered by Dean (1945), it  is not 
unreasonable. 
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6. Summary 
A variety of approximate solutions to the general problem of wave diffraction by 

a change in depth and/or velocity have been presented within a unified framework. 
The pattern of success among the models shows that the profile at  the discontinuity 
favours the smaller vertical scale, whether this is imposed by the depth or by 
refraction by a current. This implies that an optimized numerical solution (using as 
few modes as possible) would probably use more ephemeral modes in regions with 
larger-scale free waves. 

The action model of Smith (1983) was extended to include changes in depth as well 
as velocity. Mathematically, this model (A) is the geometric mean of the two 
plane-wave solutions (Pi, P2). Physically, the present formulation invites inter- 
pretation of model A as an r.m.8. matching over the open portion of the vertical 
boundary. 

The variational approximation of Miles (1967) was extended to include changes in 
velocity as well as depth. In  this approach, the shallower side is assumed to dominate 
at  the boundary, and ephemeral modes on only the deeper side help absorb the 
difference. Comparison of results with and without contributions from the emphe- 
meral modes indicate these to be important in calculating the reflection from a 
finite-depth shelf (e.g. deep on one side, kh < 1 on the other). This is further 
emphasized by considering the reflection from a submerged wall ( $ 5 ) :  in this case, 
no reflection is predicted unless the trapped contribution is included. 

The two-term Galerkin expansion of Evans (1975) was extended to the finite-depth, 
flat bottom case (E), but was not extended to changes in depth. For a flat bottom 
and velocities less than half the incident phase speed, model A is the next best 
approximation, though in this range all of the models are acceptable. For strong 
velocities, the vertical profile at the boundary appears to favour the smaller-scale 
waves, so that one of the one-sided models (Mi or M2) becomes appropriate, while 
the other (M2 or M i )  becomes unacceptable. Thus, the strong surface trapping 
imposed by greatly reducing the wavelength of the transmitted wave acts very much 
like a shallower depth; in effect, the waves with larger vertical scale are forced to 
match the shallower oQes. 

In  the more general case of a change in both depth and current, one or other of 
the Miles-like solutions (Mi  or M2) is available; i.e. that with the ephemeral modes 
in the deeper region. With no current, the shallower region haa waves with smaller 
wale, so the available solution i s  the 4ppropriate one. With a current change as well, 
the smaller-scale waves c w  result in the deeper region. In this c w ,  it is inferred that 
none of the models presented here are adequate; rather, a more complete numerical 
approach is required (cf. Kirby et al. 1987). For velocities smaller than half the phase 
opeed, however, this problem is not severe. 

The possibility exists (but is not pursued here) that a simple model could be devised 
by considering a weighted average of Pi and P2; e.g. weighting by the free 
wwenumbers on either side. Also, the trapped contribution could probably be 
parameterized in terms of the r.m.s. misfit of the resulting free waves. 

This work was supported by Office of Naval Research codes 220 and 420. I also 
acknowledge useful correspondence with W. D. McKee and J. T. Kirby. 

14 FLY 175 



412 J .  Smith 

R E F E R E N C E S  

DEAN, W. R. 1945 On the reflexion of surface waves by a submerged plane barrier. Proc. Camb. 

EVANS, D. V. 1975 The transmission of deep-water waves across a vortex sheet. J. Fluid Mech. 

HAYES, W. D. 1970 Conservation of action and modal wave action. Proc. R. Soc. Lo&. A 320, 

KIRBY, J. T. 1986 Comments on ‘The effects of a jet-like current on gravity waves in shallow 

KIRBY, J. T. & DALRYMPLE, R. A. 1983 Propagation of obliquely incident water waves over a 

KIRBY, J. T., DALRYMPLE, R. A. & SEO, S. N. 1987 Propagation of obliquely incident water 

LAMB, H. 1945 Hydrodynamics. Dover, 728 pp. 
MCKEE, W. D. & TESORIERO, F. 1986 Reflection of water waves from a vertical vortex sheet in 

MEI, C. C. & Lo, E. 1984 The effects of a jet-like current on gravity waves in shallow water. 

MEI, C. C. & Lo, E. 1986 Reply. J. Phys. Oceanogr. 16, 398-399. 
MILES, J. W. 1967 Surface-wave scattering matrix for a shelf. J. Fluid Mech. 28, 755-767. 
MILES, J. W. 1982 On surface-wave diffraction by a trench. J. Fluid Mech. 115, 315-325. 
SMITH, J. 1983 On surface gravity waves crossing weak current jets. J. Fluid Mech. 134,277-299. 

Phil. SOC. 41, 231-238. 

68, 389401. 

187-208. 

water’. J. Phys. Oceanogr. 16, 395-397. 

trench. J. Fluid Mech. 133,4743. 

waves over a trench. Part 2. Currents flowing along the trench. J. Fluid Mech. 176, 95-116. 

water of finite depth. J .  Austral. Math. Soc. B (submitted). 

J. Phys. Oceanogr. 14, 471477. 


